理学 >>> 物理学 >>> 理论物理学 声学 热学 光学 电磁学 无线电物理 电子物理学 凝聚态物理学 等离子体物理学 原子分子物理学 原子核物理学 高能物理学 计算物理学 应用物理学 物理学其他学科
搜索结果: 1-15 共查到知识要闻 物理学 氮相关记录38条 . 查询时间(0.161 秒)
2023年7月5日,微电子所高频高压中心刘新宇研究员团队与中科院合肥物质科学院固体物理所合作在氮化镓(GaN)表面态物理起源与抑制研究方面取得了重要进展,揭示了GaN表面天然氧化物中的无定型Ga2O是界面态的主要来源,创新研发出高温(500℃)远程等离子体表面修饰方法以有效去除该成分,成功恢复了GaN表面原子级台阶流形貌(超净GaN表面的代表性特征),显著抑制了介质/GaN间的深能级界面态,改善了...
随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中,有机π-共轭材料因具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势而备受关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛应用于有机光电器件中。而该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。同时,随着共轭体系的增大,分子间聚集...
具有非平庸晶格结构的二维材料中存在丰富的物理特性,这些特性由于受到对称性的保护而非常稳定。例如,以石墨烯和硅烯为代表的蜂窝晶格在布里渊区的K点存在线性色散的狄拉克锥。另一方面,在二维线图晶格中(包括笼目和棋盘晶格),对称约束导致布洛赫波的干涉相消,从而导致实空间中波函数的局域化或动量空间中的拓扑平带,导致出现多种强关联物理效应,包括分数量子霍尔效应、非常规超导和维格纳结晶化等。线图晶格中丰富的物理...
随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中有机π-共轭材料因其具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势,受到了人们的广泛关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛地用于有机光电器件中。但是,该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。与此同时,随着共轭体...
超导是凝聚态物质中的电子发生配对和凝聚以后的宏观量子相干现象,具有零电阻和完全抗磁性等奇特性质。基于超导开发的装备和器件可以在电力、能源、医疗、大科学工程、通讯、国防等方面带来颠覆性的应用,因此世界上很多发达国家都把超导列为21世纪的战略高技术进行支持和研究。2023年3月7日,美国罗切斯特大学的Ranga Dias副教授团队在美国物理学会的三月大会上面报道说在一种掺氮的镥氢化物(nitrogen...
2023年2月28日,中国科学院合肥物质科学研究院固体物理研究所研究员丁俊峰团队联合中国科学技术大学教授章根强,实现了含有氮空位的石墨相氮化碳高压下的带隙优化和光电响应的增强。相关成果发表在Physical Review Applied上。
2023年2月22日,中科院合肥研究院固体所计算物理与量子材料研究部丁俊峰团队联合中国科学技术大学章根强教授,实现了含有氮空位的石墨相氮化碳高压下的带隙优化和光电响应的增强。相关结果发表在Physical Review Applied上。
深紫外LED器件因对新型冠状病毒具有显著的灭杀效果而成为面向人民生命健康的国家重大需求,高铝组分铝镓氮(AlGaN)的高效p型掺杂是实现高性能深紫外LED器件的关键。然而,AlGaN中镁(Mg)杂质离化能很大,成为实现其高效p型掺杂的核心难题。短周期超晶格技术路线能有效降低AlGaN中Mg杂质的离化能,并通过微带有效提升载流子输运性能;但是,短周期超晶格中微带的形成要求可控制备亚纳米厚度势垒层,这...
人为衍生排放进入环境大气中的NOx存在浓度虽极小(ppb级),却是酸雨、光化学烟雾、臭氧损耗的主要元凶,并对人体呼吸和心肺系统有强烈刺激和伤害作用。相比传统的NOx治理技术(包括吸收、吸附和选择性催化还原处理技术等),纳米光催化净化技术可利用太阳能在常温常压下实现环境大气中低浓度NOx的去除,被认为是保卫生态环境和有效处理污染问题的有效策略之一。然而,目前仍然需要克服一些关键科学问题来拓宽光催化净...
2022年1月3日,中国科学院院士、中科院大连化学物理研究所催化与新材料研究中心研究员张涛、王晓东、王爱琴、林坚团队,与福州大学教授林森等合作,在单原子催化转化丙烷脱氢制丙烯的研究中取得新进展。该团队报道了氮掺杂碳载体稳定的Ru单原子催化剂,能够实现临氢条件下丙烷高效脱氢制丙烯,可媲美商业化PtSn/Al2O3催化剂。研究发现,Ru单原子中心内壳层和外壳层氮物种对催化剂的高稳定性和高选择性起到重要...
PM2.5(空气动力学粒径小于2.5 μm的颗粒物)是一种主要的大气污染物,严重危害人体健康。世界卫生组织估算全球PM2.5污染每年造成数百万人过早死亡(指死亡年龄低于预期寿命),成为诸多国家亟需解决的重大环境问题。活性氮(Reactive nitrogen; Nr)排放,包括氨氮(NH3)和氮氧化物(NOx),是造成大气PM2.5污染的重要排放来源,它们与二氧化硫(SO2)一起在大气中通过化学转...
近日,中国科学院大连化学物理研究所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队与澳大利亚迪肯大学类伟巍教授团队合作,制备出一种二维硼氮碳纳米筛材料,通过缺陷调控构筑出高比能微型超级电容器,并揭示了此电容器的储能机理。
高质量的氮化铝薄膜是制备高质量深紫外发射器件的关键。由于衬底材料和生产成本的限制,外延氮化铝薄膜具有较高的位错,而且晶体质量通常与基板的错切角度和方向有关。因此,如何以低成本、高效率地获得高质量薄膜成为半导体领域的一个挑战。
近地面臭氧作为一种主要大气污染物,危害人体健康和植被,并显著影响大气氧化性。我国正面临着日益严峻的臭氧污染形势。全球监测数据表明,当前我国华北平原夏季臭氧浓度和健康暴露水平显著高于其他北半球中纬度城市地区。尽管2013年我国实施《大气污染防治行动计划》以来,大幅减少了氮氧化物(臭氧主要前体物)等污染物的人为排放,并有效控制了细颗粒物(PM2.5)污染,但华北平原夏季大气臭氧浓度在2013—2019...
以氮化镓(GaN)、氮化铝(AlN)为代表的第三代半导体是国家“十四五”规划和2035年远景目标纲要中确定的重点发展方向,是我国半导体领域在新一轮科技革命和产业变革中抢占未来竞争制高点的重要机遇。Ⅲ族氮化物薄膜一般通过金属有机化学气相沉积(MOCVD)方法在蓝宝石衬底上外延制备。然而,一方面,蓝宝石与氮化物之间存在较大的晶格失配与热失配,外延薄膜质量较差,严重影响器件的性能及可靠性,成为目前宽禁带...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...