>>> 哲学 经济学 法学 教育学 文学 历史学 理学 工学 农学 医学 军事学 管理学 旅游学 文化学 特色库
搜索结果: 1-15 共查到OR-CNN相关记录35条 . 查询时间(0.078 秒)
全波形反演(FWI)是一种非线性拟合观测地震记录从而获得高清晰速度模型的最优化算法。FWI能够通过拟合浅层初至波和反射波获得较准确的浅层速度模型。但是,FWI通常无法通过拟合深层反射波获得较准确的深层速度模型(包括背景速度和反射界面信息),因为模型梯度中的反射界面信息(偏移成分)比背景速度信息(层析成像成分)更加显著。因此,FWI主要更新深层反射界面而不是深层背景速度,而背景速度的误差会降低反射界...
移动端的表情识别有巨大需求,但是受算力限制,主流深度神经网络无法直接移植。为此,设计了一个浅层网络,在节约计算量的同时保证了识别率。网络中使用三组堆叠而成的卷积层,有助于增大感受野,便于更好地提取特征,这是提升识别率的关键;使用全局平均池化层,避免引入额外的全连接层,大幅降低参数量,在训练样本不足的情况下,降低模型过拟合风险。在FER-2013数据集进行训练,准确率超过现有大多数算法;在CK+数据...
三维点云语义分割的结果包含着对场景中多个目标的识别,是三维场景信息提取的重要环节,在智慧城市等多个领域扮演关键角色。由于三维激光点云数据量庞大、场景复杂性高等问题,大多数现有方法只能以相对较低的识别率提取有限类型的对象。本文提出了一种在三维激光点云场景中结合残差学习和马尔可夫随机场(MRF)优化的层次化多类型目标自动提取框架。该框架首先将点云滤波为地面点和非地面点;然后从非地面点中提取建筑物以降低...
提出一种新颖的中文文本分类框架。在该框架中,首先基于Word2Vec构建词向量模型,然后采用分词频文档频率(segmentation term frequencydocument frequency,STF-DF)筛选出类别区分能力强的关键词,同时构建一种适合于中文文本分类的卷积神经网络(convolution neural network,CNN)进行分类。实验结果表明,采用该框架使THUCN...
以宁夏16套枸杞农田实景监测系统2018年和2019年拍摄的图像作为资料,结合枸杞开花期和果实成熟期的植物学特征,利用更快速的基于区域的卷积神经网络(Faster R-CNN)方法对图像进行训练、分类,构建枸杞开花期和果实成熟期的识别算法,以平均精确率(AP)和平均精度均值(mAP)作为模型的评价指标,并将自动识别结果与专家目视判断结果和田间观测记录进行对比。结果表明:当网络结构中重要超参数批尺寸...
提出了一种基于Mask R-CNN的枪弹底火装配质量检测方案。构建了底火装配质量在线检测系统,该系统利用机器视觉技术设计了基于Mask R-CNN网络模型的检测算法,主要借助目标检测算法 Faster R-CNN进行目标定位,用全卷积神经网络(FCN) 进行分割,实现枪弹底火装配缺陷位置显示和标记。通过实验将本文检测方法与人工检测方式进行了对比,结果表明,该方案能够快速、准确、有效地判别出合格品,...
提出了一种深度卷积神经网络与极限学习机相结合的滚动轴承自适应故障诊断方法。该方法的第一阶段训练深度卷积神经网络作为特征提取器:通过卷积层和池化层提取低阶特征,然后在全连接层合成高层次特征。第二阶段将第一阶段自适应提取出来的特征通过极限学习机进行轴承故障类别的准确快速分类,实现了自适应“端到端”的故障诊断。实验结果表明,该方法能有效的识别故障类别,缩短了训练时间,并具有良好的鲁棒性和实时性。
The side-channel community has recently investigated a new approach, based on deep learning, to significantly improve profiled attacks against embedded systems. Previous works have shown the benefit o...
我国木材资源有限,为了提高木材的利用率,采用机器视觉来实现木材缺陷快速而稳定的检测,不仅可以克服人工检测的低效率和木材缺陷识别的低准确率,而且对提高木材加工企业的智能化水平具有重要意义。为了高效、快速、准确地进行无损检测,采用深度学习方法,建立了一种基于快速深度神经网络的实木板材缺陷识别模型。
Fully homomorphic encryption, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned cloud applications including deep learning as a service. This com...
Increasing frequency in red tide outbreaks has been reported around the world. It is of great concern due to not only their adverse effects on human health and marine organisms, but also their impacts...
Remote sensing optical image cloud detection is one of the most important problems in remote sensing data processing. Aiming at the information loss caused by cloud cover, a cloud detection method bas...
The traditional fusion methods are based on the fact that the spectral ranges of the Panchromatic (PAN) and multispectral bands (MS) are almost overlapping. In this paper, we propose a new pan-sharpen...
卷积神经网络(Convolutional Neural Network,CNN)是一种基于数据驱动的学习算法,简化了传统从特征提取到分类的两阶段式处理任务,被广泛应用于计算机科学的各个领域.在标注数据不足的地震数据去噪领域,CNN的推广应用受到限制.针对这一问题,本文提出了一种基于数据生成和增广的地震数据CNN去噪框架.对于合成数据,本文对无噪地震数据添加不同方差的高斯噪声,增广后构成训练集,实现...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...