搜索结果: 1-4 共查到“化学 ANN”相关记录4条 . 查询时间(0.656 秒)
GA-PLS结合PC-ANN算法提高奶粉蛋白质模型精度
近红外光谱 GA-PLS PC-ANN
2009/11/2
提出一种偏最小二乘法(PLS)和人工神经网络(ANN)结合用于近红外光谱(NIRS)的分析方法,以提高奶粉蛋白质模型的预测精度。首先采用基于遗传算法的波长选择法(RS-GA)优化光谱数据,建立GA-PLS模型预测奶粉蛋白线性部分;然后在RS-GA法选择的波段上进行主成分分析(PCA),以主成分的得分矩阵作为ANN模型输入层,以GA-PLS预测值与真实值之差作为输出层,建立PC-ANN模型预测其非线...
采用多元散射校正(MSC)预处理方法对冬小麦叶片反射光谱进行预处理,有效地减小物理因素对光谱的影响,之后用非线性迭代偏最小二乘法(NIPALS)提取经MSC处理后的反射光谱的主成分,主成分个数由交叉证实法(Cross Validation)确定,将提取的主成分作为人工神经网络(ANN)的输入,建立人工神经网络分析模型(MSC-ANN),用冬小麦叶片的反射光谱来预测冬小麦叶片叶绿素含量。校准集的化学...
采用偏最小二乘(PLS)结合人工神经网络(ANN)算法解析Norvasc(络活喜)药片的近红外(NIR)漫反射光谱, 实现了对其中有效成分苯磺酸氨氯地平的非破坏定量测定. 设计了最佳的PLS-ANN模型, 分别讨论了最佳波长范围、 导数光谱及输入层和隐含层节点数对预测结果的影响. 以HPLC法的测定结果作标准, 苯磺酸氨氯地平浓度预测值的相对误差RE<3.5%, 该方法可用于Norvasc药品实际...
利用ANN法预估芳香族多硝基化合物的密度
结构化学 人工神经网络(ANN) 密度预估 芳香族多硝基化合物
2014/3/17
运用神经网络模型,采用误差反向传播算法,对一系列芳香族多硝基化合物的密度进行了预测。结果表明,芳香族多硝基化合物的密度与其分子结构存在良好的相关性,选用分子结构描述码作为输入特征参数能取得较高的预估精度,预测结果的相对误差一般在±10%以内。