理学 >>> 数学 >>> 数理逻辑与数学基础 数论 代数学 代数几何学 几何学 拓扑学 数学分析 非标准分析 函数论 常微分方程 偏微分方程 动力系统 积分方程 泛函分析 计算数学 概率论 数理统计学 应用统计数学 运筹学 组合数学 离散数学 模糊数学 应用数学 数学其他学科
搜索结果: 1-15 共查到数学 curvature相关记录130条 . 查询时间(0.078 秒)
On a smooth compact manifold of dimensions three and four with totally non-umbilic boundary,imposing non-negativity assumptions on curvatures of the background metric, we establish that there exists a...
In this talk we show that bounded harmonic functions are constant on gradient shrinking Ricci solitons with CSC by frequency function method. As an application, we show that the space of harmonic func...
We study mean curvature flows (MCFs) coming out of cones. As cones are singular at the origin, the evolution is generally not unique. A special case of such flows is known as the self-expanders. We wi...
We will survey some recent existence theory of closed constant mean curvature hypersurfaces using the min-max method. We hope to discuss some old and new open problems on this topic as well.
We will construct some new examples of steady gradient Ricci solitons with positive curvature operator. Moreover, for any 3D steady gradient Ricci soliton with positive curvature, if it is asymptotic ...
Mean curvature flow is the fastest way to decrease the area of surfaces. It is the model in many disciplines such as material science, fluid mechanism, and computer graphics. The translators are a spe...
The motivation to study manifolds with scalar curvature bounded from below comes from Mathematical General Relativity and Riemannian Geometry. In this talk, I'll first briefly introduce some problems ...
In this talk, we discuss Y. Wei, B. Yang and T. Zhou’s preprint arXiv:2210.06035, in which they consider volume preserving curvature flows of smooth, closed and convex hypersurfaces in hyperbolic spac...
We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the total curvature of the surface. Ene...
We study a class of mean curvature equations −Mu = H +λup where M denotes the mean curvature operator and for p ≥ 1. We show that there exists an extremal parameter λ∗ such that this equat...
This paper is concerned with properties of maximal solutions of the Ricci and cross curvature flows on locally homogeneous three-manifolds of type SL2(R). We prove that, generically, a maximal solut...
In this paper, we first derive a pinching estimate on the traceless Ricci curvature in term of scalar curvature and Weyl tensor under the Ricci flow. Then we apply this estimate to study...
This paper is concerned with properties of maximal solutions of the Ricci and cross curvature flows on locally homogeneous three-manifolds of type SL2(R). We prove that, generically, a maximal...
In this paper, we study the positive cross curvature flow on locally homogeneous 3-manifolds. We describe the long time behavior of these flows. We combine this with earlier results conc...
Chow and Hamilton introduced the cross curvature flow on closed 3- manifolds with negative or positive sectional curvature. In this paper, we study the negative cross curvature flow in t...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...