>>> 哲学 经济学 法学 教育学 文学 历史学 理学 工学 农学 医学 军事学 管理学 旅游学 文化学 特色库
搜索结果: 1-15 共查到叶片衰老相关记录75条 . 查询时间(0.343 秒)
近日,中国农业科学院作物科学研究所作物生物信息学及应用创新团队发现了弱蓝光遮荫信号诱导大豆叶片衰老的分子机制,创制了具有抗叶片衰老特性的耐荫突变体,为培育耐密高产大豆新品种提供了育种新材料。相关研究成果在线发表在《自然·通讯(Nature Communications)》上。
近日,西北农林科技大学生命科学学院在Journal of Biological Chemistry发表了题为“The Abscisic Acid-Responsive Element Binding Factors (ABFs)-MAPKKK18 module regulates ABA- induced leaf senescence in Arabidopsis”的研究论文。该研究揭示了ABA...
近日,山东省农业科学院经济作物研究所遗传育种创新团队在International Journal of Biological Macromolecules(中科院1区期刊,2022年 IF=8.02)在线发表题为“Genome-wide characterization of the UDP-glycosyltransferase gene family reveals their potenti...
近日,园艺学院瓜类作物种质资源与遗传育种研究团队在国际知名期刊《Plant Cell & Environment》上发表了题为“Melatonin delays ABA-induced leaf senescence via H2O2-dependent calcium signaling”的研究论文,揭示了褪黑素通过H2O2和Ca2+信号通路延缓甜瓜叶片衰老的机理。
叶片是植物最主要的光合器官,是植物生长能量和有机物质的主要来源地。以水稻为例,籽粒灌浆所需营养物质的60%~80%来自叶片光合作用。因此,叶片的功能直接影响着作物的最终产量和品质。研究表明,成熟期水稻功能叶片每延迟1天衰老,可增产1%左右。因此,研究叶片细胞死亡的分子机制具有重要的理论和实践意义。
叶片衰老进程是植物叶片发育的最终阶段,叶片早衰缩短了植物的光合周期,限制了植株的生物产量。适当延缓叶片衰老速率是提高作物、牧草和能源植物的产量和品质的重要途径。植物体内存在一系列正向促进衰老的’油门元件’和反向抑制衰老的’刹车元件’,不同调控元件间相互作用,协同控制叶片衰老的有序进程。例如,转录因子NAP(NAC-LIKE,NAC029)能够直接靶定并促进叶绿素降解基因及ABA合成基因的表达,以加...
近日,中国农业科学院烟草研究所烟草功能基因组创新团队揭示了小分子多肽CLE14参与调控叶龄控制及胁迫诱导叶片衰老的生物学功能,研究结果为叶片衰老研究提供了新思路,进一步补充了衰老调控模式。相关研究成果在线发表在《分子植物(Molecular Plant)》上。
近日,中国农业科学院饲料研究所反刍动物饲料创新团队发现羔羊的瘤胃不同部位的微生物存在差异,证实瘤胃上皮微生物对瘤胃发育有着更重要的影响。该研究促进了对羔羊瘤胃发育特性的深入了解,并有助于完善培育策略、促进幼畜健康生长。相关研究成果已在《环境微生物学(Environmental Microbiology)》期刊正式刊出。
全球气候变暖导致极端高温天气出现的频率和强度不断增加,高温胁迫诱发的早衰极大影响了植物的生长发育和生物量的累积,但目前关于高温胁迫诱导叶片衰老的机制还缺乏系统的认识。另外,作为细胞内源计时机制的生物钟在调节植物应答非生物胁迫过程中发挥着重要作用,但其是否参与调控高温胁迫诱导衰老的进程还不清楚。中科院植物所王雷研究组此前发现光敏色素相互作用因子(PHYTOCHROME INTERACTING FAC...
2021年2月6日,植物学知名期刊Plant Cell在线发表了南方科技大学生命科学学院和北京林业大学林木分子设计育种高精尖创新中心共同完成的林木叶片衰老研究论文“An Alternative Splicing Variant of PtRD26 Delays Leaf Senescence by Regulating Multiple NAC Transcription Factors in P...
高羊茅是绿期相对较长、应用最广泛的冷季型草坪草之一,其适宜生长温度为15-25℃,较高的温度会导致叶片提前衰老,严重影响高羊茅的草坪质量及观赏价值。然而,随着温室效应日益加剧,我国长江中下游地区夏季经常出现38℃以上极端高温,且持续时间较长。夏季高温伤害被认为是利用和推广高羊茅的主要限制因子。因此,研究高羊茅应答高温胁迫的分子机理,可为培育耐高温品种提供科学依据,使四季常绿草坪草成为可能。
在菜薹(Brassica rapa var. parachinensis)中克隆BrNAP1并分析其功能。BrNAP1编码区全长813 bp,编码270个氨基酸,具有NAP转录因子特有的保守结构域,属于NAP亚家族成员。BrNAP1表达量与叶片衰老程度呈正相关且受ABA诱导表达上调。亚细胞定位试验表明BrNAP1定位于细胞核。互补试验显示BrNAP1能使拟南芥atnap滞绿表型回复至野生型,过表达...
2020年7月6日,由四川大学牵头,与中山大学、浙江农林大学、加拿大魁北克大学、美国佛罗里达州立大学等单位的研究人员合作,在Nature Climate Change杂志发表了题为“Leaf senescence exhibits stronger climatic responses during warm than during cold autumns”的论文,揭示了在全球变暖的大背景下,秋...
2020年6月2日,国际学术期刊EMBO Reports在线发表了中国科学院分子植物科学卓越创新中心蔡伟明研究组题为“Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathwa...
近日,中国农业科学院烟草研究所烟草功能基因组创新团队在植物衰老调控机理方面取得重要进展,揭示了转录因子DEAR4参与植物叶片衰老的生物学功能,相关研究成果发表在《植物科学前沿(Frontiers in Plant Science)》上。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...