理学 >>> 数学 信息科学与系统科学 物理学 化学 天文学 地球科学总论 大气科学 地球物理学 地理学 地质学 水文学 海洋科学 生物学 科学技术史
搜索结果: 1-15 共查到理学 超晶格相关记录48条 . 查询时间(0.184 秒)
莫尔超晶格是由两个或多个单层/少层二维材料以一定的层间转角堆叠在一起而形成的一类新颖的关联电子材料体系。莫尔超晶格体系具有强的电子关联和能带拓扑特性,展现出一系列衍生现象,如非常规超导、莫尔激子、滑移铁电、分数量子反常霍尔效应等。然而,由于传统机械剥离方法获得的单层/少层二维材料的尺寸小且产率低,增加了构筑摩尔超晶格中的角度对准的难度;构筑高质量莫尔超晶格需要避免湿法转移过程,使得近年来发展的金膜...
近日,上海科技大学物质科学与技术学院刘健鹏课题组、王竹君课题组在三维摩尔超晶格体系中发现了新奇物性,相关成果发表于国际物理学期刊《物理评论快报》(Physical Review Letters, PRL)。
中国科学技术大学化学与材料科学学院、合肥微尺度物质科学国家研究中心梁好均(已故)教授课题组的姚东宝特任副研究员等人模仿自然界中分子的复制和组装过程,利用可编程DNA催组装网络调控纳米粒子组装路径,构建了一种可实现纳米粒子自复制与超晶格精准构筑的自复制系统。相关成果以“Programming of Supercrystals Using Replicable DNA-Functionalized C...
自石墨烯被发现以来,原子层级别厚度的二维材料备受学界关注。与普通块体材料相比,剥离后的单层材料的电子和声子均呈现出完全的二维化行为特征,诱发了丰富多样的新奇物性。然而,二维材料多依赖于衬底的约束,而来自衬底的电子特别是声子的影响无法避免。同时,单层材料多不具备化学与环境稳定性。上述问题在普通块体材料中并不存在。因此,在块体材料中实现层间退耦合,诱导出本征二维特性具有重要意义,利于二维材料本征物性的...
自石墨烯被发现以来,原子层级别厚度的二维材料引起了学界的广泛关注。与普通块体材料相比,剥离后的单层材料,其电子和声子均呈现出完全的二维化行为特征,诱发了丰富多样的新奇物性。然而,二维材料多依赖于衬底的约束,来自衬底的电子特别是声子的影响无法避免。同时,单层材料还大多不具备化学与环境稳定性。上述问题在普通块体材料中并不存在。因此,在块体材料中实现层间退耦合,诱导出本征二维特性具有重要的意义,有利于二...
几种超晶格量子阱结构中限制电子态的光谱研究。
Ⅱ-Ⅵ族化合物原子层外延生长及短期超晶格量子阱的特性研究。
2023年5月24,中国科学院上海光学精密机械研究所红外光学材料研究中心董红星研究员和张龙研究员团队在溴氯掺杂量子点自组装超晶格结构中实现稳定蓝光腔增强超荧光,并解析了量子点超晶格结构通过降低电声耦合进而抑制光致相偏析的机制。相关研究成果以“Stable and ultrafast blue cavity-enhanced superflourescence in mixed halide per...
近日, 中南大学物理与电子学院刘艳平、何军教授与美国加州州立大学北岭分校(CSUN)Gang Lu、澳大利亚悉尼大学(TUS)刘宗文、湖南大学潘安练、段曦东教授等国内外学者合作,在国际顶级期刊Advanced Materials(影响因子:32.08)上发表题为“TMDCs莫尔超晶格层间耦合效应的量子调制”(Strong interlayer coupling in twisted transit...
基于半导体过渡金属硫族化合物的摩尔超晶格为研究二维电子体系中的关联效应提供了新的平台。近年来,研究人员在实验中观测到此类体系中存在着摩尔激子,莫特绝缘态、广义魏格纳晶体、量子反常霍尔效应等丰富而新奇的量子物态。普遍认为过渡金属硫族化合物摩尔超晶格的低能哈密顿量可以由三角晶格上的哈伯德(Hubbard)模型来描述。尽管人们已经对这一模型进行了广泛的研究,但是由于问题的复杂性和缺乏合适的实验体系,它在...
基于新型低维半导体材料的新奇物理性质,开展相关物性表征与器件效应研究。发展超低频拉曼光谱技术,研究低维量子体系中的声子物理和声子输运特性;研究低维材料的微纳光电器件;研究基于低维半导体的柔性电子器件,发展全柔性智能感知器件与系统集成。
利用电子自旋进行信息的传递、处理与存储,开展相关自旋电子材料与器件的物理研究。探索高性能自旋电子材料制备,研究自旋的注入及自旋轨道耦合相关物理现象与效应;实现全电学的自旋调控,研制自旋存储、逻辑及自旋人工智能器件。
通过探索半导体及其低维量子结构中的新奇量子现象,发展基于量子效应的新原理、新器件和新应用,旨在解决当前半导体科技中的关键问题,包括解决晶体管面临的物理极限、大规模光电集成缺少片上光源问题、缺乏高性能p型透明导电氧化物等。
将纳米尺度功能性单元编程为高级复杂的异质结构不仅能表现出优于单一组分的性能,还可以带来奇异的化学/物理特性,从而为实现一系列光子学和电子学应用提供了一条独特的途径。在过去数十年里,无机合成化学的发展已经促使了一系列组分结构各异的纳米异质结构不断出现,例如核-壳结构、部分包覆结构、二聚体结构、枝状结构以及多级结构等。然而,这类传统构型的纳米异质结构受晶格匹配的外延生长规则限制,其材料种类非常有限。
将纳米尺度功能性单元编程为高级复杂的异质结构不仅能表现出优于单一组分的性能,还可以带来奇异的化学/物理特性,从而为实现一系列光子学和电子学应用提供了一条独特的途径。在过去数十年里,无机合成化学的发展已经促使了一系列组分结构各异的纳米异质结构不断出现,例如核-壳结构、部分包覆结构、二聚体结构、枝状结构以及多级结构等。然而,这类传统构型的纳米异质结构受晶格匹配的外延生长规则限制,其材料种类非常有限。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...